libration
Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen der Seite angezeigt.
Beide Seiten, vorherige ÜberarbeitungVorherige ÜberarbeitungNächste Überarbeitung | Vorherige Überarbeitung | ||
libration [2024/05/03 15:03] – [Die Mondlibration] hcgreier | libration [2025/07/02 16:36] (aktuell) – [Tägliche Libration] hcgreier | ||
---|---|---|---|
Zeile 33: | Zeile 33: | ||
Zur mathematischen Beschreibung benötigt man als erstes die Neigung der Mondbahn gegen die Ekliptik mit $i = 5\overset{\circ}{.}15668983$ und die Neigung des Mondäquators gegen die Mondbahn mit $i_0 = 1\overset{\circ}{.}542416667^{\circ}$. Mit den geozentrisch ekliptikalen Koordianten $\lambda$ und $\beta$ kann man dann als nächstes die Libration der Breite mit $l'$ und $b'$ berechnen. | Zur mathematischen Beschreibung benötigt man als erstes die Neigung der Mondbahn gegen die Ekliptik mit $i = 5\overset{\circ}{.}15668983$ und die Neigung des Mondäquators gegen die Mondbahn mit $i_0 = 1\overset{\circ}{.}542416667^{\circ}$. Mit den geozentrisch ekliptikalen Koordianten $\lambda$ und $\beta$ kann man dann als nächstes die Libration der Breite mit $l'$ und $b'$ berechnen. | ||
- | {{tablelayout? | + | \[\begin{align} |
- | | \[\begin{align}\cos(b' | + | \cos(b' |
+ | \cos(b' | ||
+ | \sin(b' | ||
+ | \end{align}\tag{1}\] | ||
mit $F = l - \Omega$ als Argument der Breite. | mit $F = l - \Omega$ als Argument der Breite. | ||
Zeile 55: | Zeile 58: | ||
Zur mathematischen Beschreibung braucht man die beiden Hilfswerte $K_1$ und $K_2$: | Zur mathematischen Beschreibung braucht man die beiden Hilfswerte $K_1$ und $K_2$: | ||
- | $$K_1 = 119\overset{\circ}{.}75 + 131\overset{\circ}{.}849 \ T \\ K_2 = 72\overset{\circ}{.}56 + 20\overset{\circ}{.}186 \ T$$ | + | $$K_1 = 119\overset{\circ}{.}75 + 131\overset{\circ}{.}849 \ T \\ K_2 = 72\overset{\circ}{.}56 + 20\overset{\circ}{.}186 \ T\tag{2}$$ |
Die Gleichungen zur Berechnung der Libration in Länge sind dann: | Die Gleichungen zur Berechnung der Libration in Länge sind dann: | ||
- | + | \[\begin{array}{llll} \varrho = & - 0\overset{\circ}{.}02752 \ \cos(m) & - 0\overset{\circ}{.}02245 \ \sin(F) & + 0\overset{\circ}{.}00684 \ \cos(m - 2 \ F) \\ & - 0\overset{\circ}{.}00293 \ \cos(2 \ F) & - 0\overset{\circ}{.}00085 \ \cos(2 \ F - 2 \ D) & - 0\overset{\circ}{.}00054 \ \cos(m - 2 \ D) \\ & - 0\overset{\circ}{.}00020 \ \sin(m + F) & - 0\overset{\circ}{.}00020 \ \cos(m + 2 \ F) & - 0\overset{\circ}{.}00020 \ \cos(m - F) \\ & + 0\overset{\circ}{.}00014 \ \cos(m + 2 \ F - 2 \ D) & & \\ | |
- | {{tablelayout? | + | |
- | | \[\begin{array}{llll} \varrho = & - 0\overset{\circ}{.}02752 \ \cos(m) & - 0\overset{\circ}{.}02245 \ \sin(F) & + 0\overset{\circ}{.}00684 \ \cos(m - 2 \ F) \\ & - 0\overset{\circ}{.}00293 \ \cos(2 \ F) & - 0\overset{\circ}{.}00085 \ \cos(2 \ F - 2 \ D) & - 0\overset{\circ}{.}00054 \ \cos(m - 2 \ D) \\ & - 0\overset{\circ}{.}00020 \ \sin(m + F) & - 0\overset{\circ}{.}00020 \ \cos(m + 2 \ F) & - 0\overset{\circ}{.}00020 \ \cos(m - F) \\ & + 0\overset{\circ}{.}00014 \ \cos(m + 2 \ F - 2 \ D) & & \\ | + | |
Die Libration in Länge $l'' | Die Libration in Länge $l'' | ||
- | + | \[\begin{align} | |
- | {{tablelayout? | + | l'' |
- | | \[\begin{align} l'' | + | b'' |
+ | \end{align}\tag{4}\] | ||
- | ===== Tägliche | + | ===== Die topozentrische |
Im Vorhergehenden wurde angenommen, dass sich der Beobachter im **Mittelpunkt** der Erde befindet. Ein tatsächlicher Beobachter $B$ befindet sich jedoch an der Erdoberfläche. Daher bildet die Richtung, aus der er auf den Mond schaut, einen Winkel mit der Linie, die die Mittelpunkte von Erde und Mond verbindet (**Abb.3**). Für diesen Beobachter ist der Mittelpunkt $O$ der Mondscheibe nicht derselbe Punkt des Mondglobus wie der Mittelpunkt $m$ für einen geozentrischen Beobachter. Dieser topozentrische Effekt, der ca. $1^\circ 02'$ erreichen kann, variiert im Tagesverlauf, | Im Vorhergehenden wurde angenommen, dass sich der Beobachter im **Mittelpunkt** der Erde befindet. Ein tatsächlicher Beobachter $B$ befindet sich jedoch an der Erdoberfläche. Daher bildet die Richtung, aus der er auf den Mond schaut, einen Winkel mit der Linie, die die Mittelpunkte von Erde und Mond verbindet (**Abb.3**). Für diesen Beobachter ist der Mittelpunkt $O$ der Mondscheibe nicht derselbe Punkt des Mondglobus wie der Mittelpunkt $m$ für einen geozentrischen Beobachter. Dieser topozentrische Effekt, der ca. $1^\circ 02'$ erreichen kann, variiert im Tagesverlauf, | ||
Zeile 89: | Zeile 91: | ||
l &= l' + l'' | l &= l' + l'' | ||
b &= b' + b'' | b &= b' + b'' | ||
- | \end{align}\] | + | \end{align}\tag{5}\] |
$+b$ bedeutet der Nordpol ist dem Beobachter zugewandt und $+l$ bedeutet man sieht mehr von der Westseite (Mond libriert nach Ost). Die **Abb.4** hat damit $+l,\;-b$. Die vier Kombinationen von $l$ und $b$ sind hier nochmals gegenübergestellt: | $+b$ bedeutet der Nordpol ist dem Beobachter zugewandt und $+l$ bedeutet man sieht mehr von der Westseite (Mond libriert nach Ost). Die **Abb.4** hat damit $+l,\;-b$. Die vier Kombinationen von $l$ und $b$ sind hier nochmals gegenübergestellt: |
libration.1714741390.txt.gz · Zuletzt geändert: 2024/12/20 01:34 (Externe Bearbeitung)